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Abstract. A two-fold Cayley tree graph with fully q-coordinated sites is constructed and the spin-1 Ising
Blume-Emery-Griffiths model on the constructed graph is solved exactly using the exact recursion equations
for the coordination number q = 3. The exact phase diagrams in (k T/J , K/J ) and (k T/J , D/J) planes
are obtained for various values of constants D/J and K/J , respectively, and the tricritical behavior is
found. It is observed that when the negative biquadratic exchange (K) and the positive crystal-field (D)
interactions are large enough, the tricritical point disappears in the (k T/J , K/J) plane. On the other
hand, the system always exhibits a tricritical behavior in the phase diagram of (k T/J , D/J) plane.

PACS. 05.70.Fh Phase transitions: general studies – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems – 75.10.Hk Classical spin models

1 Introduction

The Ising systems have been one of the most actively stud-
ied systems in statistical physics. After the exact solution
of the simple spin-1/2 Ising model for two-dimensional
lattice [1] several attempts were made to arrive at the
exact solution of the spin-1/2 Ising model in three di-
mensions, but all attempts led only to a partial success.
However, in the course of these studies many powerful
approximation methods with gradually increasing sophis-
tications have arised and flourished in the literature [2–4].
Various attempts were also made to devise models and
propose pseudolattices for which the exact solution can
readily be obtained. Cayley tree and cactus tree are
two such examples of pseudolattices [2,5]. The incorpo-
ration of the boundary sites in the exact treatment of
the spin-1/2 Ising model on the Cayley tree were investi-
gated by Runnels [6], Eggarter [7], Müller-Hartmann and
Zittartz [8] and Thompson [9] shows unusual proper-
ties. Moreover, a two-fold Cayley tree graph with fully
q-coordinated sites is constructed and the ferromagnetic
spin-1/2 Ising model on the constructed graph is solved
exactly by Delale [10]. It is shown that a phase transi-
tion results in zero field at the critical Bethe temperature
with spontaneous magnetization below the critical Bethe
temperature.

On the other hand, it is well-known that the spins
greater than one-half are quite interesting in view of the
appearance of some complicated interactions in addition
to a simple isotropic dipolar interaction. Therefore, spin-1
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Ising systems [11] have been used to study the thermo-
dynamical behavior of many cooperative physical sys-
tems, such as He3-He4 mixtures, multicomponent fluids,
microemulsions, semiconductor alloys, magnetic materi-
als, martensitic transformation to quote only a few. The
above investigations were done by different approxima-
tions [2–4]. The exact solutions of the spin-1 Ising sys-
tems have been given on the honeycomb lattices for the
bilinear (J) and biquadratic (K) exchange interactions in
the subspace eβKCoshβJ = 1, where β = 1/(k T ), k is
the Boltzmann constant and T is the absolute tempera-
ture, by Horiguchi [12], Wu and Wu [13] and Shankar [14].
Moreover, Rosengren and Häggkvist [15] solved the spin-1
Ising model with bilinear (J), biquadratic (K) nearest-
neighbor exchange interactions and the crystal-field in-
teraction (D), also known as the Blume-Emery-Griffiths
(BEG) [16] or spin-1 Ising BEG model, exactly for the two-
dimensional honeycomb lattice for eβKCoshβJ = 1. Fur-
thermore, the exact solution of the spin-1 Ising model with
J and K exchange interactions was given by Chakraborty
and Morita [17,18] and J , K and D interactions by
Chakraborty and Tucker [19,20] using a generalization of
the method of Katsura and Takizawa [21]. The critical
properties of the spin-1 Ising BEG model on the Bethe
lattice were studied (using exact recursion equations [22])
by Ananikian et al. [23], Akheyan and Ananikian [24] and
Izmailian and Hu [25].

In this paper, we use the exact recursion equations [22]
to obtain exact expressions for the free energy, the Curie
temperature, the dipolar and the quadrupole moment or-
der parameters of the BEG model on a two-fold Cay-
ley tree with fully q-coordinated sites. We obtained the
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Fig. 1. The construction of the Cayley tree with the coordi-
nation number q = n = 3. Each point z on the (n − 1)th left
shell there exists a point z′ on the (n − 1)th right shell such
that they share the same number of neighbors. In this way,
the points z and z′ and each vertex of the polygon will have
precisely q nearest-neighbors.

exact phase diagrams in (k T/J , D/J ) and (k T/J , K/J)
planes for the system and found the tricritical behavior.

The organization of the remaining part of the paper is
as follows. In Section 2, we present the construction of the
two-fold Cayley tree graph and give exact formulation of
the BEG model on the constructed graph. The exact ex-
pressions for the critical temperatures or the second-order
phase transition temperatures and the free energy, which
is used to find the first-order phase transition tempera-
tures, are obtained and the phase diagrams are presented
in Section 3. A summary and discussion of the phase dia-
grams are given in Section 4.

2 The BEG model on the two-fold Cayley
tree graph

In this section, first we construct a hierarchical graph
which is called the two-fold Cayley tree graph with fully
q-coordinated sites and then we solve the BEG model on
the two-fold Cayley tree graph. Since a detailed descrip-
tion of the two-fold Cayley tree model is given in refer-
ence [10], we shall only give a brief summary here. We
take two points, i.e. O and O′, as the central points of
the graph, seen in Figure 1. We connect q different points
to each central point and call each of the q points “the
first shell”. To distinguish between the two first shell, we
call the one connected to the central point O “the first left
shell” and that connected to the central point O′ “the first
right shell”. We continue by joining (q − 1) new points to
every point in the left and right shells ending in a set of q
(q− 1) points, called “the second left shell”, all connected
to the points of the first left shell and a set of q (q − 1)
points, called “the second right shell”, all connected to
the points of the first right shell. In this way, we estab-
lish further shells by joining each point on the mth right
(left) shell to new (q − 1) points to obtain the (m + 1)th
right (left) shell. We repeat this procedure for m = 2, 3,...,
(n−1) for some positive integer n ending in two yet discon-
nected Cayley tree graphs each of which contains (n− 1)

shells. If Ns is the number of the sites on the graph un-
der construction, then there is a positive integer n such
that for each point on the (n− 1)th right (left) shell there
will be a corresponding point on the (n− 1)th left (right)
shell that has the same (q − 1) neighboring points. The
construction of the graph terminates with that of the nth
shell, called the frontier shell which connects the two dis-
connected Cayley trees each containing (n− 1) shells.

Ns, the number of sites and Nb, the number of the
bonds in this two-fold Cayley tree graph, are found by
Delale [10] as

Ns =
q2(q − 1)n−1 − 4

q − 2
, q > 2, (1)

and

Nb =
q3(q − 1)n−1 − 4q

2(q − 2)
, q > 2. (2)

We should also mention that a two-fold Cayley tree
is not a Bethe lattice because the graph contains closed
loops due to the existence of the frontier shell which are
absent in the Bethe lattice.

Now we are ready to study the Blume-Emery-Griffiths
(BEG) model on such a two-fold Cayley tree graph.
The BEG model is just a spin-1 Ising model with the
Hamiltonian

H = −J
∑
〈i,j〉

σiσj −K
∑
〈i,j〉

σ2
i σ

2
j −D

∑
i

σ2
i , (3)

where 〈i, j〉 indicates summation over nearest-neighbor
pairs and σi and σj take the values ±1, 0. J , K and D are
the bilinear exchange, biquadratic exchange and crystal-
field (or single-ion anisotropy) interactions, respectively.
The calculation on the two-fold Cayley tree graph is done
recursively [22]. On the other hand, the partition function
of the model can be written

Z =
∑

exp(−βH)

=
∑
σ

exp

β
J∑
〈i,j〉

σiσj +K
∑
〈i,j〉

σ2
i σ

2
j +D

∑
i

σ2
i


,
(4)

where β = 1/(k T ), k is the Boltzmann constant and T is
the absolute temperature.

The model has two long-range order parameters,
namely the magnetization M which is the excess of one
orientations over the other, also called the dipole moment
and the quadrupolar order parameter Q. The order pa-
rameters at site O are given by

M = 〈σ0〉 = Z−1

∑
σ

σ0 exp

β
J∑

〈i,j〉
σiσj

+K
∑
〈i,j〉

σ2
i σ

2
j +D

∑
i

σ2
i


 , (5)
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and

Q = 〈σ2
0〉 = Z−1

∑
σ

σ2
0 exp

β
J∑

〈i,j〉
σiσj

+K
∑
〈i,j〉

σ2
i σ

2
j +D

∑
i

σ2
i


 · (6)

As it is the case in all statistical physics models, the evalu-
ation of the partition function solves the problem. For this
reason we utilize a factorization property of the exponen-
tial in equation (4) similar to that given in reference [22].
From Figure 1, it is easily seen that if the two-fold Cayley
tree graph is cut at the central sites O and O′, the graph
splits into q disconnected pieces. Thus the exponential in
equation (4) factorizes as

exp
[
βD

(
σ2

0 + σ′20
)] q∏
j=1

Qn
(
σ0 + σ′0|s(j)

)
, (7)

where

Qn
(
σ0 + σ′0|s(j)

)
= exp

[
β

{
J (σ0s1 + σ′0s

′
1)

+K
(
σ2

0s
2
1 + σ′20 s

′2
1

)
+ J

∑
〈i,j〉

σiσj

+K
∑
〈i,j〉

σ2
i σ

2
j +D

∑
i

σ2
i

}]
· (8)

and σi denotes the spin at the site i of the subgraph (other
than the central sites O and O′ which have spins σ0 and σ′0,
respectively) and where the first two summations in equa-
tion (8) is over all unbroken bonds of the subgraph and the
third summation is over all sites (other than the central
sites). Moreover, suffix n (n > 1 by definition) for Qn de-
notes that each subgraph consists of two Cayley trees each
has (n − 1) shells joined to the nth (frontier) shell. Now
if any of the q equivalent subgraphs, say the upper sub-
graph, is cut at sites 1 and 1′, it decomposes into (q − 1)
equivalent subgraphs each consisting of two Cayley tree
graphs with (n− 2) shell joined to the frontier shell. Thus
the reccurence relation for Qn is obtained as

Qn (σ0 + σ′0|s) = exp

[
β

{
J (σ0s1 + σ′0s

′
1)

+K
(
σ2

0s
2
1 + σ′20 s

′2
1

)
+D

(
s2

1 + s′21
)}]

q−1∏
j=1

Qn−1

(
s1, s

′
1|t(j)

)
, (9)

where t(j) indicates all the spins other than s1 and s′1
on the jth of the (q − 1) newly constructed subgraphs.

From these factorization relations in equations (7–9), one
can easily calculate the magnetization (dipolar) M and
quadrupolar Q order parameters at site O. For this calcu-
lation we define

gn (σ0, σ
′
0) =

∑
s

Qn (σ0, σ
′
0|s) , (10)

and using this definition in equation (7), we find the par-
tition function from equations (4, 8) as

Z =
∑
σ0,σ′0

exp
[
βD

(
σ2

0 + σ′20
)]

[gn (σ0, σ
′
0)]q . (11)

On the other hand, using equation (5) magnetization at
site O can be written as

M = Z−1
∑
σ0,σ′0

σ0 exp
[
βD

(
σ2

0 + σ′20
)]

[gn (σ0, σ
′
0)]q ,

(12)

and the quadrupolar order parameter Q, from equa-
tion (6), at the same site as

Q = Z−1
∑
σ0,σ′0

σ2
0 exp

[
βD

(
σ2

0 + σ′20
)]

[gn (σ0, σ
′
0)]q . (13)

At this point, it should be noticed that the two-fold
Cayley tree graph is symmetric about the frontier shell
by the construction, seen in Figure 1. This symmetry can
be expressed as a symmetry relation for Qn as

Qn
(
σ0, σ

′
0|s(j)

)
= Qn

(
σ′0, σ0|s(j)

)
. (14)

The function gn, i.e. equation (10), also reflects this sym-
metry relation as

gn (σ0, σ
′
0) = gn (σ′0, σ0) . (15)

Summing over all s in equation (8) and using equa-
tion (10), the recursion relations for gn is obtained as

gn (σ0, σ
′
0) =

∑
s1

∑
s′1

exp [β {J (σ0s1 + σ′0s
′
1)

+K
(
σ2

0s
2
1 + σ′20 s

′2
1

)
+D

(
s2

1 + s′21
)}]

[gn−1 (s1, s
′
1)]q−1

.
(16)

Since σ0, σ
′
0 = ±1, 0, we can define xn , yn , zn , wn

and vn by

xn =
gn(+,+)
gn(−, 0)

, yn =
gn(−,−)
gn(−, 0)

, zn =
gn(+,−)
gn(−, 0)

,

wn =
gn(+, 0)
gn(−, 0)

, vn =
gn(0, 0)
gn(−, 0)

· (17)

We should also mention that gn(+,−) = gn(−,+),
gn(0,+) = gn(+, 0) and gn(0,−) = gn(−, 0) due to equa-
tion (15). The explicit expressions for xn, yn, zn, wn
and vn can be found by using equations (16, 17) with
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σ0, σ
′
0 = ±1, 0 and utilizing the symmetry relation, i.e.

equation (15).
In order to solve equation (17) one needs to find the

initial values of x1, y1, z1, w1 and v1 which can be deter-
mined as follows: Since the subgraph under consideration
is a polygon with (q − 1) vertices all connected pairwise,
it follows from equations (8–10) that

g1 (sz , s′z) =
∑
t

Q1 (sz, s′z |t) , (18)

with

Q1 (sz, s′z|t) = exp

β
J∑

〈i,j〉
titj +K

∑
〈i,j〉

t2i t
2
j + J (sz, s′z)

×
q−1∑
i=1

ti +
[
D +K

(
s2
z, s
′2
z

)] q−1∑
i=1

t2i

}]
, (19)

where ti indicates the spin on the ith vertex of the polygon
with values ±1,0 referring to Figure 1. The initial values
of x1, y1, z1, w1 and v1 can be found explicitly by using
equations (18, 19) for the coordination number q = 3 and
the boundary graph looks like t1 • • t2.

It should be mentioned that the values x, y, z, w, and v
have no direct physical meaning, but one can express all
the thermodynamic functions of interest in terms of these
quantities. Thus the order parameters are obtained by us-
ing the equation (17) and equations (11–13)

M = {exp[2β′d]xqn − exp[2β′d] yqn + exp[β′d]wqn
− exp[β′d]}/{exp[2β′d]xqn + exp[2β′d] yqn + 2 exp[2β′d] zqn

+ 2 exp[β′d]wqn + vqn + 2 exp[β′d]}, (20)

Q = {exp[2β′d]xqn + exp[2β′d] yqn + 2 exp[2β′d] zqn
+ exp[β′d]wqn + exp[β′d]}/{exp[2β′d]xqn + exp[2β′d] yqn

+ 2 exp[2β′d] zqn + 2 exp[β′d]wqn + vqn + 2 exp[β′d]},

(21)

where β′ = βJ , α = K/J and d = D/J .

3 The transition temperatures
and the phase diagrams

We are now in a position to obtain the exact expressions
for the critical (Curie) temperatures or the second-order
phase transition temperatures of the BEG model on the
two-fold Cayley tree graph. In order to find the exact ex-
pression for the critical temperature one searches for the
temperature at which the magnetization goes to zero. In
this way the following exact expressions of the critical tem-
perature is found:

exp[βCd]xqn − exp[βCd]yqn + wqn − 1 = 0, (22)

where βC = J/(kTC). It is easily seen that this equation
is satisfied when xn = yn and wn = 1, i.e. gn(+,+) =
gn(−,−) and gn(+, 0) = gn(−, 0). The physical insight
of these latter conditions is the following. At the criti-
cal temperature the magnetization must be equal to zero,
therefore the probability of spins being up and spins be-
ing down has to be equal to each other. We should also
mention that n characterizes how far the arbitrary chosen
central sites of the graph lie from each other. In the limit
Ns → ∞ (thereby Nb → ∞ with Nb/Ns = (1/2)q, com-
pare Eq. (1) with Eq. (2)) the central sites O and O′ will
be such that if one starts from any one of the two points
the other is not reachable after finite steps, i.e. n → ∞.
Thus the thermodynamic limit Nb → ∞ corresponds to
the limit n→∞ (see also Eq. (1)). In the thermodynamic
limit a significant fraction resides on the boundary (now
at infinity) and only sites in the finite domain become all
equivalent. Thus magnetization becomes the magnetiza-
tion per site for sites in the finite domain, hence we can
omit the suffix n. Now the exact expression for the critical
temperature is written

exp[βCd]xq − exp[βCd] yq + wq − 1 = 0, (23)

where x, y, and w are given in equation (17). The solution
of this equation gives us the critical or the second-order
phase transition temperatures. It is obvious that this equa-
tion has a simple and special solution when x = y and
w = 1. However, we determine the second-order phase
transition temperature as follows: The equations (17, 20)
are solved simultaneously by iteration for given values of
α and d, and the temperature is varied. The temperature
at which the magnetization disappears, i.e. M = 0, is the
critical temperature. It should also be mentioned that one
can also determine the critical temperature for given val-
ues of α and d from equation (23). In this way one has
to solve equations (17, 23) simultaneously by iteration.
The temperature at which equation (23) is satisfied is the
second-order phase transition or the critical temperature.

In order to determine the first-order phase transition
temperatures we need the free energy expression (F =
−k T lnZ). So using equations (11, 16) and (17), and in
the thermodynamic limit n→∞, one can obtain the exact
free energy expression as

F = − 1
β′

{ q

2− q [ln[exp[β′(−1 + α+ 2d)]xq−1

+ exp[β′(1+α+ 2d)] yq−1+2Cosh[β′] exp[β′(α+ 2d)] zq−1

+ (exp[β′d] + exp[β′(−1 + α+ d)])wq−1+vq−1+(exp[β′d]

+ exp[β′(1 + α+ d)])] + ln[exp[2β′d](xq+yq + 2zq)

+ exp[β′d](wq + 1)+vq]
}
· (24)

The first-order phase transition temperatures are deter-
mined by matching the values of the two branches of the
free energy followed while increasing and decreasing the
temperature. The temperature at which the free energy
values are equal to each other is the first-order phase tran-
sition temperature.
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Fig. 2. The phase diagram in the (k T/J,K/J) plane for var-
ious values of the D/J . The dashed and solid lines represent
the first- and second-order phase transitions respectively. Tri-
critical points are indicated with a filled triangle. The lines are
labelled with the values of D/J .

We can now obtain the phase diagram of the BEG
model in (k T/J , D/J) and (k T/J , K/J) planes for vari-
ous values of constants K/J and D/J respectively. In the
phase diagrams the dashed and solid lines corresponds to
the first- and second-order phase transition temperatures,
respectively. The system also exhibits a tricritical point at
which the lines of second- and first-order phase transitions
meet, marked with the filled triangle.

4 Summary and discussion of the results

We construct a hierarchical graph called the two-fold
Cayley tree with fully q-coordinated sites and we solve
the BEG model on the constructed graph. Exact expres-
sions for the magnetization and the quadrupolar order pa-
rameters and also the critical or the second-order phase
transition temperature and the free energy are obtained.
The first-order phase transition temperatures are deter-
mined by matching the values of the two branches of the
free energy followed while increasing and decreasing the
temperature. The temperature at which the free energy
values are equal to each other is the first-order phase tran-
sition temperature. We presented the phase diagrams in
the (k T/J , K/J) and (k T/J ,D/J) planes for various val-
ues of constants D/J and K/J respectively, seen in Fig-
ures 2–3. In the phase diagrams the dashed and solid lines
correspond to the first- and second-order phase transition
temperatures respectively and filled triangles indicate the
tricritical points.

In Figure 2, the phase diagram in (k T/J , K/J) plane
is shown for various values of D/J . For D/J > 0.025
the system always undergoes a second-order phase transi-
tion but for D/J ≤ 0.025 either a first- or a second-order
phase transition depending on the values of the order pa-
rameters, therefore the tricritical behavior appears in this

Fig. 3. The phase diagram in the (k T/J , D/J) plane for var-
ious values of the K/J . The dashed and solid lines represent
the first- and second-order phase transitions respectively. Tri-
critical points are indicated with a filled triangle. The lines are
labelled with the values of K/J .

range. The tricritical points occur at high temperatures for
larger values of K. Similar phase diagrams have been ob-
tained for only D > 0 by Chakraborty and Tucker [20] for
the BEG model on the Bethe lattice. However, for D ≤ 0
Chakraborty and Tucker found that the system undergoes
only the second-order phase transition but in our case the
system undergoes both second- and first-order phase tran-
sitions, compare Figure 2 of the present paper with Fig-
ure 2 of the reference [20]. This discrepancy is due to the
fact that Chackraborty and Tucker have used Bethe lattice
but we have used the two-fold Cayley tree. On the other
hand, a similar phase diagram was also obtained by Wang
et al. [26] for a two-dimensional BEG model using the
Monte Carlo simulations (compare Fig. 2 of the present
paper with Fig. 1 in Ref. [26]). Moreover, the phase dia-
gram for the positive values of the quadrupolar coupling
is very similar to the phase diagram of the BEG model
Hamiltonian with transverse field interactions obtained by
us [27] recently, compare Figure 2 with Figure 8 of refer-
ence [27]. We did not obtain the phase diagram for the
negative values of coupling parameter in reference [27].

Figure 3 illustrates the phase diagram in the (k T/J ,
D/J) plane for various values of K/J . The system always
undergoes a first- and second-order phase transition, hence
the system always exhibits a tricritical behavior. A similar
phase diagram is obtained by Ananikian et al. [23] for the
BEG model on the Bethe lattice. However they found that
their system only undergoes a second-order phase transi-
tion for small negative values of K/J , e.g. K = −1.5.
On the other hand, the phase diagram for the negative
values of crystal-field interaction is similar to the phase
diagram of reference [27] in which the phase diagram for
positive values of the crystal-field interaction is not pre-
sented. Finally, it should be mentioned that the similar
first- and second-order phase transition lines for K/J = 0
have been seen in many different approximations such
as the mean-field approximation [16], series-extrapolation
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techniques [28], the renormalization group theory [29], the
Monte Carlo simulation [30].
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of Erciyes University Grant Number: 00-052-22 and 00-052-6.
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